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ABSTRACT: The productivity in batch processes is re-
lated to reduction of the time required to complete each
batch. An increase in productivity can be achieved by run-
ning the polymerization isothermally using a mixture of
initiators with different decomposition rates. The amount of
each initiator in the mixture can be optimized to increase
productivity while not exceeding the maximum heat release
that the cooling system is capable of compensating for. In

this work, neural networks are used to search for the opti-
mum operating condition of the reactor. The procedure to
find the best neural network topology is presented as well as
its application. © 2005 Wiley Periodicals, Inc. ] Appl Polym Sci 98:
2088-2093, 2005
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INTRODUCTION

Productivity of batch processes is directly related to
reduction of the time required to complete each batch.
Industrial-scale reactors are designed to support a
maximum rate of heat release by exothermic polymer-
ization, which normally corresponds to autoaccelera-
tion of the polymerization rate.

Nevertheless, the average rate of heat release during
batch time is significantly smaller than the maximum
cooling capacity of the system, which means that the
cooling system is underutilized for most of the poly-
merization." The amount of heat that could still be
released is represented by the gray region in Figure 1.2

This potential heat can come from an increase in
polymerization rate in the beginning of the batch,
which can be achieved using an initiator with short
decomposition. Two other initiators with medium and
long decomposition times are used to spread the po-
lymerization rate and heat release over the batch time.

The formulation of an initiator mixture can be stated
as an optimization problem, in which the decision
variables are the amount of each initiator and the
operating temperature. The constraints to be satisfied
include the final desired quality of the polymer (mo-
lecular weight and polydispersity), maximum cooling
capacity, and desired productivity.

Neural networks were tested to evaluate whether
they could be applied to this kind of optimization
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problem. In this paper optimization, using a neural
network, was applied to search for the optimum ini-
tiator mixture used to promote bulk polymerization of
styrene.

STYRENE POLYMERIZATION

Polystyrene can be produced in batch, solution, sus-
pension, and emulsion polymerization. In bulk poly-
merization of styrene, the reaction occurs in a vessel
where product is drained at the end of the reaction.
The raw materials (styrene and initiators) are charged
to the vessel at one prior time to reacting, and the
reaction is allowed to proceed for the necessary
amount of time to achieve the desired polymer prop-
erties including desired polymerization amount (con-
version). When processing is complete, the product is
drained from the reactor vessel. The reactor is en-
closed partially in a jacket through which a heat trans-
fer fluid, such as water, is passed for heating and
cooling the contents of the vessel. Typically, batch
polymerization of styrene runs at temperatures from
45 to 100 °C using initiators and also above 100 °C,
when thermal initiation begins to play a major role in
the formation of free radicals.’?

Polymerization involves a high heat of reaction,
increasing heat of reaction, and increasing solution
viscosity as polymerization progresses and a corre-
sponding decrease in heat transfer coefficient of the
reaction material. Because of these problems, control-
ling the temperature of polymerization is very impor-
tant because of the strong dependency of free-radical
reaction kinetics on reaction temperature, directly af-
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Figure 1 Polymerization rate.

fecting polymer properties such as molecular weight
distribution. The styrene polymerization kinetic mech-
anism is well known and displays conventional kinet-
ics up to high conversions.* The propagation is very
fast, if compared to the initiation step, with the pres-
ence of a mild gel effect, leading to high molecular
weights. These features leave us with some challenges
to be studied regarding polystyrene production, such
as the use of bifunctional or tetrafunctional initiators
and the optimization of initiator cocktails.

Mathematical model

To formulate an optimal initiator mixture for bulk
polymerization of styrene, a representative mathemat-
ical model for the system is needed to generate the
data points that will be used to train the neural net-
work. The mathematical model used for bulk poly-
merization of styrene consists of a system of ordinary
differential equations that represents the mass and
energy balances, along with suitable equations for the
kinetics of the diffusion-controlled reactions in free
radical polymerization and equations for the moments
of the live and dead polymer chains.

The kinetic model, used in the simulations, consid-
ers the classic steps for free-radical mechanism: initi-
ator decomposition, initiation, propagation, transfer to
monomer, and termination. The kinetic constants are
shown in Table L.

Three initiators were selected and used in the initi-
ator mixture: Vazo 52, Vazo 64, and Vazo 88, all from
DuPont. These initiator are substituted azonitrile com-
pounds that thermally decompose to generate two
free radicals per molecule. Vazo 52 is a 2,2'-azobis(2,4-
dimethylpentanenitrile), Vazo 64 is a 2,2'-azobis(2-
methylpropanenitrile), also known as AIBN, and Vazo
88 is a 1,1'-azobis(cyclohexanecarbonitrile). The chem-
ical structures for these initiators are shown in Figure
2 and the decomposition rate constants for these ini-
tiators are shown in Table II.
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The concentration of monomer (styrene) and initia-
tors in the batch reactor is given by

d[1]
dt] = = ki,j'[Ij] (1)

j = Vazo 52, Vazo 64 and Vazo 88

d[M] .
dt = _kp'[M]'YO_kfm'[M]'YO_kdt.[M]’
(2)

The moments for live and dead polymers are given by

dy, , .

=2 ke [+ 20k [MF = ko YE - G3)
dy,
gp =2 f ke [T+ 20 kg [MP + k- [M] - Y

+ kfm'[M]‘ (Yo - Yl) - ktc‘Yo' Y, (4)

%:2‘f"ﬂ'[1]+2-kdt-[M]3+kp-[M].(2.yl

+ Yo) + kfm'[M]'(Yo - Yz) - ktc‘Yo'Yz (5)

dQ
=05 ke Y+ ki [M] Yy (6)
0,
W_ktc.yﬂ'yl—’_kfm.[M].Yl (7)
dQ
=k (Vo = YD) ke [MI-Ya (8)
TABLE I
Kinetic and Other Constants for Styrene Bulk
Polymerization

kg = 1.314.107 L - mol/min
Ea, = 114701 J/mol

kp = 1.302.10° L - mol/min

Ea, = 32486 ] /mol

k. = 4.920.10" L - mol/min
Ea,. = 14534 J/mol

k¢, = 6.579.10° L - mol/min
Eag,, = 56215 J/mol

AH = —683.6]/g

agry = 1.0 X 1073

Tysty = 1848 K

apg = 4.8 X 107*

Styrene thermal initiation
Propagation

Termination by combination
Transfer to styrene

Heat of reaction
Free volume

Teps = 378 K
Gel effect correlation A = 0.348
m = 0.50
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Figure 2 Chemical structures of Vazo 52, Vazo 64, and Vazo 88 initiators.

During polymerization, the propagation and termina-
tion rates become diffusion-controlled and the respec-
tive constants are given by

ko =K. MW““m. —A- l_i 9
tc T M MW eXP Vf Vfcrit . ( )

The free volume (V) is given by

Vf=0,025 + asry (T = Tgsry) * sty

+ aps* (T — Typs) = dps.  (10)
The heat release rate, which must be compensated for
by the reactor cooling system to maintain the temper-
ature constant, is calculated by

Q=R,-(—AH)-V. (11)
The maximum heat release rate was recorded for each
simulation to be used as a constraint with neural
network optimization.

SELECTION OF INITIATORS VIA NEURAL
NETWORK

Neural network training

Neural networks have attracted great interest as pre-
dictive models, as well as for pattern recognition. The
potential for using neural networks in industrial ap-
plications is enormous. Neural networks have the abil-
ity of learning the behavior of the process and the
relationships between variables, without needing a
model of the phenomenological laws that rule the
system. The success in obtaining a reliable and robust
network depends strongly on the choice of process
variables involved, as well as the available sets of data
and the domain used for training purposes.”

TABLE II
Decomposition Constants for Vazo Initiator

k; = 6.25 X 10'° min "
Ea; = 80578 J/mol
k; = 4.22 X 10" min~"
Ea; = 84319 J/mol
k; = 3.74 X 10'° min !
Ea; = 93561 J/mol

Vazo 52 decomposition
Vazo 64 decomposition

Vazo 88 decomposition

In general, the network consists of processing neu-
rons and information flow channels between the neu-
rons called interconnect. Each processing neuron cal-
culates the weighted sum of all interconnected signals
from the previous layer plus a bias term and then
generates an output through its activation sigmoid
functions.

In this work, the back propagation algorithm was
used, as it is the most extensively adopted algorithm,
which performs well. The available data were split
into two sets. One set was used to train the network
and the other to test its prediction capability. The
activation sigmoid function used in the neural net-
work was

1
¥y=1 + exp(— 2x)

A random selected bias was used, and weights were
updated by a Hessian approach. Special attention was
given to not overtrain the network.

The data used to train the neural networks were
obtained running a mathematical model for bulk po-
lymerization of styrene. Table III presents the ranges
for temperature and initiator concentration that were
used in the simulations. The operating conditions (ini-
tiators concentration and temperature) were selected
randomly between the range presented in Table III.
Random selected data rather than factorial designed
data were used since random data provides better
training for this kind of neural networks.®” A total of
394 operating conditions were simulated, 298 being
used to train the neural network and 96 for testing it.

Neural network selection

In view of selecting the best NN topology, NNs with
one, two, and three hidden layers were tested and the

TABLE III
Ranges Used for Each Operating Condition
Range
Variable Minimum Maximum
Initiator concentration
(mol/L) 0.008 0.1

Temperature (K) 333 383
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prediction errors were compared. Figure 3 presents
the results for the NN topologies, where a x:y topology
means a neural network with two hidden layers with
x neurons in the first layer and y neurons in the second
layer. Lower errors indicate potentially good topolo-
gies. The overall prediction error (OPE) is calculated
as

OPE = e = 3|(simulation data)
— (NN prediction)|

The first step in training NNs is to compare different
topologies, training them over 60,000 iterations. Train-
ing of these NNs shows the following:

« NNs with one hidden layer output very poor
predictions;
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Overall prediction errors for several neural network topologies.

« NNs with two hidden layers, if the second hidden
layer has at least five more neurons than the first
hidden layer, will generate better predictions than
NNs with the second hidden layer with the same
number or with fewer neurons as the first hidden
layer;

« the same observation is valid for NNs with three
hidden layers regarding the second hidden layer,
while the third hidden layer may have the same
number of neurons as the second hidden layer.

« Figure 4 presents the overall prediction error for five

NN topologies as functions of the number of train-

ing iterations. Figure 4 shows that 40,000 iterations

can be used as a decision point to decide which
topology may be used in optimization of the system.

The final decision of which NN should be used

must be done by comparing the mean prediction
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Figure 4 Overall prediction errors as a function of training iterations.
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TABLE 1V TABLE V
Prediction Errors Predictions Errors for the Final NN
Overall Mean prediction errors (%) Overall Mean prediction errors (%)

Topology  error Vazo 52 Vazo 64 Vazo 88 Temperature Topology Error Vazo 52 Vazo 64 Vazo 88 Temperature

30:35 0.255 10.42 7.63 10.54 0.41 20:25:25  0.091 3.80 2.62 2.05 0.17

20:20:220  0.216 8.18 6.65 5.66 0.33

20:25:25  0.176 6.60 4.55 5.40 0.29

error (MPE) of each operating condition for the
best topologies (Table IV). The MPE is calculated
as

e
MPE = —
n

_|(simulation data) — (NN prediction) 100 [
‘- (simulation data) X [%e].

Training has shown that a NN with 20:25:25 topology
gave the best results and was used in the optimization
of the initiator mixture. To use in the optimization,
this NN was further trained over 250,000 iterations, to
a point where the mean error dropped to 3.8% (Ta-
ble V).

Selection of the initiator mixture

Once trained, the NN can be directly used to output
the optimal operating condition of batch polymeriza-
tion of styrene for a given molecular weight (MW),
polydispersity, productivity, and maximum heat re-
lease. The advantage of using NNs in this optimiza-
tion phase is that no optimization algorithm is needed,
since the output of the NN will be optimum.

The results that were obtained were promising, and
the prediction errors using NN were small. Table VI
shows two typical examples of the prediction that can
be done for this problem, comparing the NN predic-
tion to simulation results.

Optimization of the initiator mixture

Besides their use in the selection of initiator mixtures,
trained neural networks can be used to optimize reac-
tor productivity and polymer quality as well. Produc-
tivity can be improved by using the NN to search for
new operating conditions that, for example, can in-
crease the productivity while keeping all other poly-
mer characteristics constant. Figure 5 shows an exam-
ple of the increase in productivity that can be obtained
using the neural network.

To optimize productivity, a known case (operating
condition 1) was used as the starting point for optimi-
zation. A search procedure was created to find the
optimum point, which consisted of increasing the pro-
ductivity variable (NN input variable) while maintain-
ing constant the values of the other input variables.
Upon each increase, the trained NN outputted new
operating conditions for the reactor to achieve that
specified productivity. The increase in the value of
productivity continued till an invalid value for the
operating conditions was outputted by the NN, mark-
ing the end of the search for optimum productivity.
The invalid value can be an impossible operating con-
dition (such as a negative concentration) or a condi-
tion outside the training range.

In Figure 5, operating condition 1 marks the known
operating condition, operating condition 2 marks the
result found after increasing the productivity by 0.001
kg/L - min, and operating condition 3 marks the final
result found, after the NN failed to output valid re-
sults. Operating condition 3 was tested with the math-
ematical model and the result has confirmed it as the
optimum result.

When optimizing the operating conditions of a re-
actor using neural networks, the results should be

TABLE VI
Selection of Initiator Mixtures for Styrene Bulk Polymerization

Desired polymer and constraints

Predicted operational conditions

Prediction
error (%)

M,, = 106,150 g/mol
Polydispersity = 18.4

Maximum heat = 53.2 kJ/L - min
Productivity = 0.007 kg/L - min
M,, = 75,850 g/mol
Polydispersity = 11.2

Maximum heat = 39.1 kJ/L - min
Productivity = 0.012 kg/L * min

Vazo 52 = 0.093 mol/L 1.70
Vazo 64 = 0.095 mol/L 0.02
Vazo 88 = 0.070 mol/L 2.37
Temperature = 334.7 K 0.29
Vazo 52 = 0.063 1.11
Vazo 64 = 0.070 mol/L 1.60
Vazo 88 = 0.082 mol/L 1.43
Temperature = 356.1 K 0.64
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carefully scrutinized, since the NN will always output
a prediction but without guaranteeing its feasibility.
Neural networks are not good with extrapolations, so
if the prediction falls beyond the training range for a
particular variable, this result may not be correct and
it should be checked further with the reactor model.

CONCLUSIONS

This work presents a procedure using neural networks
that can be employed to select a mixture of initiators
and the operating conditions for batch polymerization
of styrene to produce a polymer with a given molec-
ular weight, polydispersity, and at the same time an
enhanced productivity, as well as not exceeding the
maximum heat load of the reactor jacket system. Pre-
dictions using this procedure were good, outputting
estimates with less than 5% error.

Productivity optimization.

Optimizations, to improve reactor productivity and
polymer quality, can easily be made once the neural
network has been trained. The time spent optimizing
the reactor’s operating conditions is low and the re-
sults are good. Special care must be taken to analyze
whether the predictions lie within the range for which
the NN was trained since neural networks are not
particularly good with extrapolations.
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